当前位置:顶点小说>科幻灵异>从全能学霸到首席科学家> 第五章 考试中的闲暇
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第五章 考试中的闲暇(3 / 4)

式,就是学会怎么去证明它。

所以,林晓现在就是尝试着去用自己能想到的方法来证明它。

至于用什么方法呢?

他陷入了思考中,他的知识储备仅限于高中和初中,掌握的证明工具也没有多少,而他又不想用之前自己知道的方法去证明,比如用柯西中值定理定理或者洛必达法则等等。

毕竟这对他来说,就像是一个闲暇时间的挑战,他要走出自己的路。

大概就像是走在人行道上,看着下面的一块块砖,挑战一下别踩白块。

不为了别的,只是为了心情愉悦。

于是乎,做试卷没有让他陷入的沉浸式状态,此时因为思考这个问题陷入了。

没过多久,他眼前忽然一亮,找到了一个思路。

那就是利用数学归纳法,这也是他高中阶段所掌握的几种证明方法之一。

有了思路,那么就开始写。

他很快便将草稿纸翻了一面,这一面都是空白。

实际上,做完卷子之后,他草稿纸第一面都没用多少,因为他是直接在答题卡上面直接把答案解出来的,部分问题靠心算,算式实在有些多的话,才会用草稿纸。

话不多说,他便从最上面开始写了起来。

【泰勒中值定理:如果函数f(x)在含有x的某个开区间(a,b)内具有直到(n+1)阶的导数则当x在(a,b)内时,f(x)可以表示为(x -x)的一个n次多项式与一个余项r(x)之和:f (x)= f(x0)+ f′(x0)(x-x0)+……】

【引理1:f(x)在[a,b]上可导,且f ′(x)≥0,则f(x)≥f(a),x∈[a,b].

证明:由于f′(x)≥0,所以……

设g(x)……

构建

上一页 目录 +书签 下一页